US DCLL Test Blanket Module Design and Relevance to DEMO Design

By Clement P.C. Wong General Atomics, U.S.A.

2nd IAEA Technical Meeting on
"First Generation of Fusion Power Plants
Design and Technology"
IAEA Headquarters,
Wagramer Strasse, 5, 1400, Vienna, Austria

20-22 June 2007

Selection of a DEMO and Search for the First wall Material

Assessment of designs via simple systems code

- Material selection...limiting max. Γ_n
- Constraints from inboard TF coil design
- Selection for a US-DEMO for TBM
- SC coil evaluation for a $\Gamma_N = 1 \text{ MW/m}^2 \text{ machine}$

A search for DEMO plasma facing material

- C...suffers high erosion rate and radiation damage
- Be...moderate erosion rate but also suffers radiation damage
- W...low erosion rate but still has radiation damage from He⁺
- BW-mesh...an out-of-the-box approach

A Baseline US Strategy for ITER TBM Testing

Select two blanket concepts for further development:

A solid breeder concept (HCCB): we proposed to test a series of submodules that have a size of 1/3 of one-half port, each with its own FW structure, and sharing ancillary equipment with international partners.

A liquid breeder concept (DCLL): An independent half-port TBM including supporting ancillary systems and equipment.

ITER specifies a 2 mm Be coating on the first wall

Vertical

DCLL Blanket Has Minimum Critical Issues and Can Become A High Performance DEMO Blanket

Neutron wall loading: 3 MW/m², FW surface L\loading: 0.55 MW/m²

Advantages of DCLL Concept

- No need for separate neutron multiplier, like Be or Pb
- No damage to breeder material by thermal effects and/or irradiatior.
- · Lower chemical reactivity than Li
- Self-cooled PbLi with velocity~0.1 m/s to enhance Tout, minimize MHD effect
- Flow channel insert (FCI) for MHD and thermal insulation
- With PbLi T_{out} at 700°C, projected CCGT thermal efficiency ~40% for DEMO
- A high performance design with minimum critical issues
- With ODFS FW layer, blanket performance can be enhanced

With RAFS, DCLL blanket can satisfy all DEMO design requirements:

 Nuclear performance, FW helium cooling, waste disposal structural design requirements, safety impacts including LOCA, power conversion with CCGT

Clear R&D path to DEMO identified

Concept originated from

ARIES study and EU

Constraints and Assumptions for a Simplified System Code Search for DEMO and CTF

- With the use of Reduced Activation Ferritic Steel (RAFS) as the DEMO structural material, technical consensus has been reached: max. $\Gamma_n \sim 3 \text{ MW/m}^2$ and max. chamber $\Phi'' \sim 0.5$ -0.6 MW/m²
- The inboard bulking force was used also as a guideline for the US-DEMO for TBM application
- An improved GA-systems code was also used for looking into SC-coil max. Γ_n ~1 MW/m² machine

Evolution of a US – DEMO for TBM in 2004

	1	2	3	4	5
Characterization	ITER simulate	Higher β_N	Lower A	Increase n _e /n _{GW}	A=2.6
Ro, m	6.2	6.2	6.02	5.91	5.8
А	3.1	3.1	2.8	2.7	2.6
β _N	1.8	2.4 (50% of opt.)	2.49	2.53	3.19
Height, m	7.4	7.4	8.03	8.21	8.4
Pfusion, MW	475	757	2089	2103	2116
Max. Г _N , MW/m ²	0.702	1.12	3.007	3.045	3.082
P _e -net, MWe	315	577	1677	1649	1690
Reactor ave. first wall Φ ,	0.123	0.16	0.385	0.408	0.396
n _e /n _{GW}	0.84	0.84	0.84	1	1
Inboard coil bucking force*, MPa	1271	1271	1730	1361	1003
Bo, T	5.28	5.28	6.34	5.7	5.02
β _t ,%	2.5	3.3	4.1	4.5	6.1
β _p	0.65	0.87	0.765	0.731	0.862
к	1.85	1.85	1.866	1.874	1.886
Zeff	1.6	1.624	1.647	1.629	1.638
lp, MA	15	15	23	22.76	21.88
ndt, 10 ²⁰	0.84	0.81	1.02	1.2	1.09
Tmax/Tave, keV	21/8	29.5/11.2	41.9/15.9	31.5/11.9	36.2/13.7
H98y2	0.966	1.17	1.00	0.893	1.05

Improved GA systems code, better match to ITER parameters

	ITER	GA-code		ITER	GA-code
Total fusion power, MW	500	529	Triangularity	0.48	0.48
Max. Γ _n , MW/m²	0.78	0.78	Bo, T	5.3	5.3
R _o , m	6.2	6.2	q at 95% flux surface	3	3
a, m	2.0	2.0	Plasma vol, m ³	831	848
Α	3.1	3.1	Plasma area, m ²	683	742
T _{He} /T _E	5	5	Input Power total, MW	151	102
n shape factor	Flat	0.25	Avg. T _i , keV	8.9	12.8
T shape factor	Peak	1.5	n _e /n _{gw}	0.85	0.75
β _N	2	2	H-factor-98 (y,2)	1	1.07
β _t ,%	2.5	3	Z _{eff}	1.72	1.89
I _p , MA	15	15.6	He fraction	0.032	0.03
К	1.85	1.85	T _E	3.4	2.02

β_N , R_0 and P_{fusion} vs A at max. $r_N = 1 \text{ MW/m}^2$ (Outboard Midplane) with ITER inboard geometry and change in Jc

 $\begin{array}{c}
1.10^{5} \\
1.10^{4} \\
P_{\text{fusion}} \\
MW \\ 1.10^{3} \\
100 \\
0 \\
2 \\
4 \\
6 \\
A
\end{array}$

• For lower fusion power A can be lower but bulking force to the coil will increase

Tabulated Results for $\Gamma_N = 1 \text{ MW/m}^2 \text{ Cases with ITER}$ inboard geometry

	Case 1				Case 2				
	Design to ITER Physics, $\beta_N=2$ at A=3.1				SC coil design to max. $\Gamma_n = 1 \text{ MW/m}^2$ $\beta_N = 2.88 \text{ at } A = 3.1$				
Aspect Ratio (A)	R _o (m)	Max.	Fusion Power (MW)	$\beta_t B_T^2$	n/n _{GW}	R _o (m)	Equivalent J _c (MA/m ²)	Fusion Power (MW)	n/n _{GW}
1.8	9.5	5	15200	1.3	1.8	9.5	3.0	3201	1.24
2	8.4	4	8618	1.3	1.56	8.4	3.2	2264	1.1
2.5	7	1.9	2209	1.1	1.1	7	3.8	1142	0.91
3	6.3	0.9	663	0.9	0.8	6.3	4.7	748	0.82
3.5	5.9	0.4	229	0.7	0.6	5.9	5.6	532	0.76
4	5.6	0.2	91	0.5	0.5	5.6	6.6	405	0.72
5	5.3	0.07	19	0.3	0.3	5.3	8.9	269	0.66
6	5	0.03	5.5	0.2	0.2	5	11	208	0.6

For red cases A=5 and A=6, the bulking forces are 2 to 3 times higher than ITER for columns 2

Systems Study Shows the Following Trends

- Evolving from the ITER design we selected a US DEMO for TBM with A=2.6
- Designing to the same max. neutron wall loading, higher fusion power will lead to lower A
- SC-coil approach and for < 300 MW device and max. r_n = 1 MW/m², @ A=5-6, the bulking forces would be 2 to 3 times higher than the ITER value
- ITER SC-approach is not a good way to evolve to a CTF like machine
- A normal conducting coil machine, with thinner inboard shield, would be smaller and less expensive like the FDF machine but with higher recirculating power

Can Conventional PFC Materials Be Extended to DEMO?

- Carbon...high physical erosion rate, radiation damage, high tritium inventory
- Be...moderate physical erosion rate, radiation damage...0-3% swelling at ~10 dpa 3%-10% swelling at ~30-100 dpa
- Mo...low physical erosion rate, radiation damage and possible high trapped tritium inventory, due to formation of damaged sites
- W... lowest physical erosion rate, but has radiation damage and possible high trapped tritium inventory, due to formation of damaged sites
- B... common wall conditioning material, high physical erosion rate, radiation damage ... from burn-up of B¹⁰

Can W be the right surface material for DEMO?

Measured erosion rate from DiMES, C~4nm/s

Radiation Damage from He⁺ to Mo Mirror and W

Studies on He Irr. Effects on Optical Reflec.

	1st Wall Relevant Conditions	Divertor Relevant Conditions		
Research Lab	Yoshida Lab. (Kyushu U.)	Takamura Lab. (Nagoya Univ.)		
Material	Мо	w		
Irr. Temps.	R.Temp.~873K	1250K~3000K		
lon Energy	1.2keV, 8keV, 14keV	10eV~100eV		
Ion Fluence	≤ 3x10 ²² He⁺/m²	≤ 4x10 ²⁷ He⁺/m ²		
Mechanism of Blackening	 Blistering Porous structure by nm-size He bubbles 	 Fine projections (a few 10nmφ) at 1250K Projections (a few 100nmφ) and pin holes (~1µmφ) above 1500K 		
Micro- structure	Cross sectional view	Fine projection at 1250K		

Courtesy of Prof. N. Yoshida, Kyushu U., IEA 12th ITPA Meeting on Diagnostics, PPPL, March 2007

W Surface Damage by He⁺

Internal Damage by He Ion Irra. (PM-W)

Courtesy of Prof. N. Yoshida, Kyushu U., PFMC-11 IPP, Greifswald, Germany, Oct. 10-12, 2006

W Surface Damage at Higher Temperature

Courtesy of Prof. N. Yoshida, Kyushu U., IEA meeting at IPP Greifswald 2006

Similar Morphology on W Surface Has Been Observed in PISCES-B Pure He Plasma

PISCES-B: pure He plasma

 $T_s = 1200 \text{ K}$, Dt = 4290 s, Fluence = $2x10^{26} \text{ He}^+/\text{m}^2$, $E_i = 25 \text{ eV}$

NAGDIS-II: pure He plasma

 $T_s = 1250 \text{ K}$, Dt = 36,000 s, Fluence = $3.5 \times 10^{27} \text{ He}^+/\text{m}^2$, $E_i = 11 \text{ eV}$

Scanning electron microscope (SEM)

Transmission electron microscope (TEM) in Kyushu Univ.

Courtesy of Dr. M.J. Baldwin, UCSD, PFC Meeting, ANL, June 4-7, 2007

Can Conventional PFC Materials Be Extended to DEMO?

- Carbon...high physical erosion rate, radiation damage, high tritium inventory
- Be...moderate physical erosion rate, radiation damage...0%-3% swelling at ~10 dpa 3%-10% swelling at ~30-100 dpa
- Mo...low physical erosion rate, radiation damage and possible high trapped tritium inventory, due to formation of traps
- W... lowest physical erosion rate, radiation damage and possible high trapped tritium inventory, due to formation of traps
- B... high physical erosion rate, radiation damage
 ...from burn-up of B¹⁰

With potential damage to W-surface from He⁺ looks like we may have to think outside-of-the-box

Measured erosion rate from DiMES, C~4nm/s

Impacts from Boronization (BZN)

- Tokamaks with metal walls require routine BZN for high performance
 - C-Mod with molybdenum walls (Lipshultz, PSI 2006)
 - AUG with mostly tungsten walls (Neu and Kallenbach, PSI 2006, Hefei)
 - In both cases, routine boronizations are required to reduce high Z contamination and associated high radiated power in attempts to produce high performance discharges
- For DIII-D an all graphite wall machine, BZN impacts were studied by P. West using daily reference shots
 - Demonstrated the ability to reproduce ITER relevant highperformance discharges over 6000 plasma-seconds of operation with no intervening boronizations or bakes
 - Over a short period (~50 plasma-seconds) the ability to maintain hybrid operation without between shot helium glow discharge cleaning has been demonstrated
 - These AT and hybrid discharges are also reproducible after an extended entry vent

No deleterious effects to plasma performance have been identified from BZN

Up to 5800 Plasma-Seconds Since Last BZN, AT Discharges Keep on Performing

- Shot 126472 taken after 5800 plasma.seconds of operation
 - 122 major disruptions since BZN on June 10th, 2006
- Shot 126763 taken after 320 plasma.seconds of operation
 - Taken after BZN on September 16, 2006
- Shot 127672 taken after fall 2006 vent (without ECH)
- Performance very repeatable

βN G (βN H89/q ₉₅ ²) H89 Neutrons (10 ¹⁵ s ⁻¹) O V Ni XXVI	126472 Before BZN 3.75 0.38 2.65 1.7 4.6 0.41	126763 After BZN 3.70 0.37 2.65 1.7 2.3 0.14	127672 After Vent 3.80 0.39 2.65 ? 8.8 0.33
Ni XXVI	0.41	0.14	0.33

Courtesy of Dr. P. West of General Atomics, June 2007

A Boron Tungsten-mesh Invention Has Been Disclosed to US-DOE (B is to Be Fully Infiltrated Into a W-mesh)

GA is developing the concept of BW-mesh

Status:

- High purity B-dust available for transport tests in DIII-D
- Investigating different available W-mesh and learning about B infiltration
- Planning to perform DiMES testing in next FY

Pros and requirements

- The plasma would only see B, thereby retaining needed plasma performance
- W-mesh should trap enough B to withstand ELMs and a few disruptions (a B layer ~100 micron/disruption)
- B coating could protect W from charged particle radiation damage
- Should be able to control tritium inventory
- Infiltrated thickness should be about 2 mm to be a good heat transfer layer, with W providing thermal conduction path
- Should be suitable for steady-state operation

Cons:

- In-situ recoating with boron is necessary
- Similar tritium concerns as for carbon but much lower release temperature at ~300°-400°C
- Radiation damage on W, but may be less of a concern
- B will become another consumable for DEMO

Plan in DIII-D if approved

- Basic plasma discharge test with B transport
- Demonstrate in-situ boronization
- Perform ELMs and disruption tests using DiMES

Boronization Experience: "not a complete list" Reduced oxygen and impurities, edge recycling control, improved confinement

Method Thickness (nm) B/C B/(C+B)H or D/(B+C) Gas DIII-D He 90% ~100 HeGDC B_2D_6 10% (diborane) NSTX HeGDC He 90%-95% B(CD₃)₃ 10%-5% (TMB) ~70-100 0.37 0.63 TEXTOR HeGDC 45 1-1.3 ~0.3 (H) He, B_2H_6 0.22 Different variations He, $B(CH_5)_3$ 0.13-0.17 ~0.74 (H) 0.22-He, $B(CH_3)_3$ 85 0.57 HeGDC He, 99% 0.25 (D) JT-60U, at ~520 K 70 gm for ~50 shots 3-4 0.05 (H) B₁₀D₁₄, 1% decaborane 135-200 He 90%, B₂D₆ 10% C-Mod HeGDC DCGD He 90% ASDEX-upgrade Cold wall B_2D_6 or SiD₄ 10% ~50 DCGD He, 99%, B₁₀D₁₄, 1% ~100 0.18 JFT-2M LHD, room Temp. HeGD 30-50 B_2H_6 HT-7 $He:C_2B_{10}H_{12} = 1:1$ ICRF 250-320

HeGDC had been used for hydrogen desorption, D discharges had also been used for isotopic exchange from H filters were used to separate fine grain powder, and toxic gas was heated and converted at vacuum exhausts

In-situ Boronization Experience "not a complete list"

	Method	Material	Comments
DIII-D-tried once in 1993	Injection	B ₂ H ₆	No improved or degraded performance, non- uniform deposition
NSTX	Injection	B(CD ₃) ₃ 100%	~100 nm thick, improved T_e and P_e , no additional radiation from C and B
TEXTOR different variations	Injection	B(CH ₃) ₃ B(CD ₃) ₃	Z_{eff} from ~1.7 to 1.2, C to have been screened, also suggested B_2H_6 and SiD_4
TdeV	Injection	RF assisted CVD B(CH ₃) ₃	Also tried solid target PRCVD is better than PECVD because of more even distribution
PBX-M (PCVD)	Solid C/C target with 2 probes	Dipped C/C probe into 40 µm powder mixed with ethyl alcohol, 3 times	Higher neutron yield was observed
CHS	Injection	B ₁₀ D ₁₄	~2 nm, not used for LHD because of the divertor configuration
PISCES, Whyte and Buzhinskij	Injection	C ₂ B ₁₀ H ₁₂ (carborane)	Deposition rate, 10 nm/s, 4000 µm thick B/C~3-3.6 for C and AI, B/C~9 for W and Mo

Other experiments: Pure boron films from 99% pure powder were deposited on graphite by PVC vacuum deposition at 570 K, sample size 20x10x 0.2 mm, deposition rate 0.1 nm/s to 0.66 nm/s, to thickness 0.4 to ~1.5 µm

Boron Film Works As a Hydrogen-isotope Free Wall at 300–400°C

~300°-400°C (Noda 99)

 It was confirmed by experiment that most hydrogen isotope atoms are re-emitted from a boron film at T 300°-400°C. (For carbon film, corresponding temperature would be as high as 1000°C)

 B- film becomes a protective layer, hydrogen isotopes do not penetrate into the substrate of stainless steel in this temp. range. The glow discharge hydrogen implanted depth was ~10 nm in a B-film thickness of 110 nm

Nuclear Impacts Relative to the Max. Γ_n at Outboard Mid-plane by Mohamed Sawan and Rachel Slaybaugh of UW

Natural Boron, i.e. 20% B-10

100% B-11

	ITER		Power Reactor		Power Reactor
Fluence	0.38 MWa/m ²	3.8 MWa/m ²	19 MWa/m²	Fluence	19 MWa/m ²
B depletion	9.84%	19.97%	20.24%	B depletion	0.43%
Li	9.84%	19.79%	19.48%	Li	0.08%
Ве	0.0037%	0.024%	0.109%	Ве	0.13%
С	0.00008%	0.0008%	0.0042%	С	0.005%
Не		2.0056*10 ⁵ appm	2.0873*10 ⁵ appm	Не	6171 appm
Н		1.26*10 ³ appm	9.253*10 ³ appm	Н	2110 appm

Separation of B-10 is required to minimize neutron damage of B layer

BW-mesh Could Be a Promising Concept for the DEMO Chamber Surface Materials

Potentials

BW-mesh concept is very similar to the Li-infiltrated Mo mesh concept demonstrated by T-10 and FTU

- Withstand ELMs and disruption
- Minimize oxygen and high-Z impurities contamination
- Ease of wall conditioning if in-situ BNZ can be demonstrated
- Plasma helps replenishment of B-coating
- Steady-state operation
- Control of tritium inventory with surface operating >550°C
- Protect W-elements from charged particle damage, e.g. He blistering or nano hair generation
- Minimum impacts to tritium breeding with ~2 mm thick layer
- Acceptable heat transfer at divertor and first wall, aiming for Kth-equivalent of ~20 W/m.K
- Could be applied to the 2nd phase of ITER if developed in time

Key issues need to be resolved:

- In-situ boronization and B-replenishment
- Equilibrium B-layer thickness needs to be established everywhere, including the divertor
- Impact of B-migration to the vacuum and DT exhaust system
- Attachment of W-mesh to base material (e.g. FS)
- Demonstration of ability to withstand ELMs and disruption

A key design detail could be the B-injector locations

